Avoiding Quality Pitfalls for HAZOP/LOPA Sessions & Documentation
(GCPS-2019 – Paper 548413)

Steven T. Maher & Morgan T. McVey
Risk Management Professionals
www.RMPCorp.com
Steven T. Maher, PE CSP
Risk Management Professionals

• 39-Year Engineer – 35 in Process Safety Consulting Specializing in Hazard Analysis and QRA

• Mechanical Engineering
 ➢ BS – Duke University
 ➢ MS – Carnegie-Mellon University

• Professional Engineer – Mechanical & Chemical Engineering

• CCPS Technical Steering Committee – mid-1980s

• Past-President Southern CA Society for Risk Analysis

• Landmark Efforts
 ➢ Platform Safety Shutdown System Effectiveness Study
 ➢ Torrance Refinery Safety Advisor for MHF Conversion

• Paper & Book Publications – See www.RMPCorp.com
Morgan T. McVey
Risk Management Professionals

- 4 Years in Process Safety Consulting Specializing in Hazard Analysis
- Expertise in HAZOP/LOPA Methodologies
- Chemical Engineering
 - BS – University of California San Diego
- Paper & Webinar Publications – See www.RMPCorp.com
Avoiding Quality Pitfalls for HAZOP/LOPA Sessions & Documentation
(GCPS-2019 – Paper 548413)

Steven T. Maher & Morgan T. McVey
Risk Management Professionals
www.RMPCorp.com
Key Topics

• Why Quality
• Defining PHA Objectives
• Planning & Preparation Essentials
• Tips for Conducting a Quality PHA
• Documentation Tips
• Priorities for the Quality Assurance Review
• Emphasis Points for Maximizing the Future Usefulness of the PHA
• Questions?
Why Quality Process Hazard Analysis is Important

Tragedies to Avoid
Evolution of SMS Guidelines & Regulations to Performance (Goal) – Based Standards

Onshore Process Safety (USA)
- 1986 – RMPP
- 1987 – CCPS
- 1990 – API RP 750
- 1992 – PSM
- 1996 – RMP

1999 – PSSDS
1991 – SEMP Concept
1993 – API RP 75
2004 – API RP 75
2006 – SEMS Concept
2009 – SEMS Prop. Rule
2010 – SEMS Final Rule
2013-2015 – 3 CSB Reports
2013 – E.O. 13650
2013/14 – OSHA/EPARFI Drafts
2014 – CCC/Cor/ISO
2015-2017 – Updated
2017/Jan – RMP Rule Updt
2017/Oct – CalARP-P4 & 5189.1 Promulgation

Offshore Safety Management Systems (USA)

1992 – UK Safety Case
2005 – UK SC Update
2009 – MODU HSE Case
2015 – Offshore Safety Directive

Offshore Safety Management Systems (UK)
Tandem Advances in Protection System Design Architectures & Analysis

Protection System Design Evolution

1986 - API RP 14C
1996 - ANSI/ISA S84.01
1999 - IEC 61508-1
2004 - IEC 61511-1
2004 - ANSI/ISA S94.00.01

Reliability Criteria & Design Architecture Specifications

<table>
<thead>
<tr>
<th>SIL-1</th>
<th>SIL-2</th>
<th>SIL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-2} \leq \text{PFD}_{\text{AVG}} < 10^{-1})</td>
<td>(10^{-3} \leq \text{PFD}_{\text{AVG}} < 10^{-2})</td>
<td>(10^{-4} \leq \text{PFD}_{\text{AVG}} < 10^{-3})</td>
</tr>
</tbody>
</table>

Voting Logic

Electronic Sensing & Sig. Processing

Single-Element Analog Devices
HAZOP & LOPA are Core Elements of Hazard Evaluation
Planning & Preparation Essentials

• **Qualified, Experienced, & Prepared:**
 - Technical Experts who Participate in all Phases of the PHA
 - Facilitator
 - Scribe

• **Quality-Checked, Complete, & Field-Verified Engineering Drawings**

• **Access to Other Key Process Safety Information**

• **PHA & Revalidation Schedule**

• **Cause Pre-Population**
Tips for Conducting a Quality PHA
Tips for Conducting a Quality PHA

• Technical Details
 ✓ Process Design/Limits & **Response to Upset Conditions**
 ✓ Overpressure Ratios
 ✓ Cause/Consequence Documentation
 ✓ Instrumentation & Setpoints
 ✓ Control & Protection System Actions
 ✓ Valve Failure Mode Clarity
 ✓ Crediting Alarms as Safeguards
 ✓ Subcomponent Failure Modes

Common Temperature Control System
(control station block and bypass valves removed)
Tips for Conducting a Quality PHA

• PHA Sessions
 ➢ PHA Team Training
 ➢ Session Length Reflecting Process Complexity
 ➢ Node Completeness Checks
 ➢ PHA Revalidation vs. Re-do
 ➢ Node Boundaries
 ➢ Avoid Repeating Scenarios
Tips for Conducting a Quality PHA

• Information Dynamics
 ➢ Information Requirements & Prioritized Action Items
 ➢ A “Parking Lot” for Resolvable PHA Issues to Streamline Efforts
 ➢ Manageable Drawing Updates – Knowing when to Stop
 ➢ Manageable Information Gaps
• Analysis Completeness
 ➢ Specific Causes, with Equipment Numbers Identified
 ➢ Identify Probable Worst-Case Consequences
 ➢ Focus on Reliable, Active, Tagged Safeguards with Sufficient Process Safety Time – Link to Cause/Consequence
 ➢ Recommendations (or gap acceptance) Whenever Clearly-Defined Acceptable Risk Level is Not Achieved
 ➢ Valid Operating Modes Addressed

• Consistency
 ➢ Risk-Ranking – Consistent & Synchronized with Scenario
 ➢ Level of Detail & Scenario Depth Pivoting on Importance
Documentation

• Usability
 ➢ Recommendations – Understandable, Self-standing, Logical, Complete

• Traceability
 ➢ Scenarios – Logically-developed, Complete, Understandable
 ➢ Block Valve Inadvertent Mispositioning
 ➢ Liberal Use of Clarifying Comments
 ➢ Risk-Ranking – Consistent & Matched With Scenario
 ➢ Clear Scope & System Boundaries
 ➢ Prolific Use of Equipment Tag Numbers & P&ID References
Priorities for QA Review

- Completeness Check – All Key Causal Events
- Probable Worst-Case Consequences
- Safeguard/IPL Verification – Especially Independence
- Scenarios – Interpretable
- Risk-Ranking – Consistent
- Clear Action Items
- Same Initiating Event, but Different Deviation – Increased potential for confusion and future misuse
Emphasis Points for Maximizing the Future Usefulness of the PHA

- Sessions
- Resources
- Documentation

Maximizing Future Usefulness
Maximizing the Future Usefulness of the PHA

- Apply Documentation Traceability Tips
- Prolific Use of Equipment Tag Numbers, P&ID References, & Cross-Referencing
- Sensible and Consistent Grouping of Scenarios
- Use Standardized PHA Approach
- Large Nodes Can Allow for a More Holistic Approach
- Qualifications and Experience of Facilitator & Team
- Consider Long-term Use & Strive for “Evergreen” Approach
- Software Longevity & Compatibility

2019 ♦ 2024 ♦ 2029 ♦ 2034 ♦ 2039 ♦ 2044 ♦ 2049 ♦ 2054